
Suggesting Meaningful Variable Names for Decompiled Code:
A Machine Translation Approach

Alan Jaffe

Carnegie Mellon University

Pittsburgh, PA, USA

apjaffe@andrew.cmu.edu

ABSTRACT
Decompiled code lacks meaningful variable names. We used statis-

tical machine translation to suggest variable names that are natural
given the context. This technique has previously been successfully

applied to obfuscated JavaScript code, but decompiled C code poses

unique challenges in constructing an aligned corpus and selecting

the best translation from among several candidates.

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing;

KEYWORDS
Reverse engineering, Statistical machine translation, Decompilation

ACM Reference Format:
Alan Jaffe. 2017. Suggesting Meaningful Variable Names for Decompiled

Code: A Machine Translation Approach. In Proceedings of 2017 11th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 3 pages.
https://doi.org/10.1145/3106237.3121274

1 RESEARCH PROBLEM AND MOTIVATION
The process of compiling converts source code meant to be read

and written by humans into binary meant to be executed by com-

puters. As such, there is little consideration in compilation for

human-centric aspects such as readability. The reverse process,

decompilation, is an essential part of reverse engineering efforts,

aimed at finding security vulnerabilities, analyzing malware, and

maintaining legacy code, just to name a few; in contrast to compil-

ing, decompilation is a process in which human users are essential.

Fortunately, decompilers such as Hex-Rays [9] and Phoenix [17] ex-

ist, and can be used to recover source code from binaries. However,

compiled code loses all variable names; consequently, most current

decompilers will replace any pre-compilation variable names with

uninformative numbered identifiers in the decompiled output.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3121274

A great deal of effort goes into selecting meaningful variable

names while writing code, as source code is a primary means of

communication for programmers [12]. Moreover, useful variable

names make it easier to understand the code [14]. Even single-letter

variable names can be helpful when selected carefully [2]. In prac-

tice, reverse engineers may devote substantial effort to manually

fixing placeholder variable names when inspecting decompiled

code [4, 6, 8]. This process could be made easier by automatically

suggesting more “natural” variable names than the default place-

holders, as shown in Figure 1. This is exactly the goal of this re-

search.

2 BACKGROUND AND RELATEDWORK
Code is natural [5, 10]. The formal language permits great variety,

yet real code repeats common patterns in predictable ways. Iden-

tifier names are not selected randomly, but rather to fit naturally

into the context. Fortunately, there is a plentiful supply of natural
code in “Big Code” archives such as GitHub. In recent years, statis-

tical techniques have been developed to apply this huge trove of

developer knowledge to software engineering problems, including

code completion [16], cross-language porting [11], and deobfusca-

tion [15].

For instance, Allamanis et al. [1] used a simple n-gram model to

predict better variable names. This approach intends to improve

code that is already relatively high quality, rather than generat-

ing identifiers from scratch for decompiled code. It achieves high

accuracy by frequently choosing to retain the existing identifier,

which is only effective when the existing identifiers are already

reasonably high quality.

The JSNice tool [15], using the Nice2Predict framework [3], ap-

plies a statistical approach to deobfuscation by attempting to re-

cover variable names in obfuscated JavaScript. JSNice manages

to improve the rate of successfully recovered variable names by

38.1% compared to a baseline which keeps all variable names un-

changed. The approach used by JSNice is language-dependent; it

models dependencies between variables using Conditional Random

Fields, which requires non-trivial amounts of feature engineering

and static analysis.

Most recently, an alternative and seemingly more generalizable

deobfuscation approach has been proposed [18], which uses sta-

tistical machine translation (SMT) to recover obfuscated variable

names. This approach does not require static analysis, and performs

comparably well to JSNice [18]. Seeing the success of this approach,

we apply it here to decompiled C code.

While the idea of applying statistical machine translation to de-

obfuscation is relatively recent, SMT has long been used successfuly

in translating natural languages [13]. Statistical machine translation

https://doi.org/10.1145/3106237.3121274
https://doi.org/10.1145/3106237.3121274

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alan Jaffe

Figure 1: On the left is the original decompiled C, with uninformative variable names. On the right, we have the suggested
names. The true names for a1 through a4 respectively were ctxt , error ,msд, and val . v5 is an extraneous variable generated by
the decompiler (not in the original source code), and yet the system still proposes a reasonable name for it, status.

uses the noisy channel model, which treats the source language as

a distorted version of the target language. Bayes’ theorem is used to

break the process into two models. The translation model is trained

using aligned parallel data to predict p(f |e), the probability that

a particular target language sentence e would be translated into a

particular source language sentence f . Meanwhile, the language

model uses a monolingual corpus to predict p(e), the probability of

generating a particular target language sentence.

Non-statistical approaches to identifier renaming have also been

attempted, although they are not the focus of this work. For in-

stance, the Dream decompiler by Yakdan et al. [20] detects API calls

and uses the appropriate parameter names as identifiers. Likewise,

Dream++ by Yakdan et al. [19] extends Dream with the ability

to rename identifiers that are detected as loop counters, array in-

dices, or boolean variables. However, these are strictly rule-based

approaches, limited by their reliance on a fixed set of patterns.

3 APPROACH AND UNIQUENESS
Our unique approach is to apply the SMT framework to the problem

of suggesting natural identifier names for decompiled C binaries.We

use the well-known SMT tool Moses [13], which trains a translation

model using aligned parallel data and separately trains a language

model based on a monolingual corpus. Obtaining the necessary

aligned parallel data poses unique challenges for decompiled C

binaries, since the decompilation process distorts the structure

of the underlying source code. We generated a parallel corpus

by compiling and then decompiling C projects on GitHub, then

applying a novel algorithm to align the identifiers appropriately.

We also faced the challenge of selecting a consistent replacement

among multiple translations proposed for each variable name.

4 RESULTS AND CONTRIBUTIONS
This work provides three main contributions:

(1) A novel method to extract aligned parallel training data

(2) A statistical machine translation framework for suggesting

variable names in decompiled code using Moses SMT

(3) An evaluation of this approach on a held-out test sample

4.1 Extracting Aligned Training Data
We used GHTorrent [7] to select 20225 C-based projects (8.4 billion

lines) from GitHub. Each project was compiled, then decompiled

using Hex-Rays decompiler [9]. We aligned the decompiled code

with the original source code to determine the true variable names.

We assumed that the order that the variables are first used in the

source code will be the same as in the decompiled code. Then we

calculated the similarity between each pair of variables and used

a polynomial time dynamic programming algorithm to pick the

matching with the best total similarity.

In order to assign these similarity scores, we computed signatures

for each variable. Each time the variable is used, we added an entry

to the signature containing the nesting depth of the usage in terms

of loops, return statements, function calls, and unary operations.

The similarity of two variables is defined as the Levenshtein distance

between the respective signatures.

We checked the accuracy of the alignment procedure by com-

piling some binaries with debug symbols (using gcc’s -g flag),

allowing the decompiler to determine the true variable names, and

then attempting to recompute them using the alignment procedure.

67.6% of the variables were successfully aligned.

4.2 Machine Translation Framework
The aligned corpus is used to train the Moses SMT translation

model. Moses is unaware of the syntactic structure of the program,

so when the same variable reoccurs, Moses may provide different

translations. Therefore, we evaluate each candidate by substituting

it into the program and using the monolingual language model

to compute the total probability. That gives us a measure of how

well the candidate fits into the contexts where it is used. We se-

lect the candidate with the highest probability and apply it to all

occurrences.

We improved performance by renaming the variables automati-

cally prior to providing them to Moses. We tested several methods,

including type, argument position, and max entropy line. In each

case, we replaced the variable name with a hash of the specified at-

tributes. Different renaming methods had different tradeoffs, since

the more informative variable names are also less likely to appear

in the training set, which prevents them from being successfully

translated.

Suggesting Meaningful Variable Names for Decompiled Code:
A Machine Translation Approach ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Accuracy

Exact Match Accuracy
No renaming 22.10%

Rename by type 21.80%

Rename by type, argument position 24.00%

Rename by type, max entropy line 22.10%

Rename by type, arg. position, max entropy line 23.50%

Approximate Match Accuracy
No renaming 24.10%

Rename by type 25.20%

Rename by type, argument position 27.20%

Rename by type, max entropy line 25.40%

Rename by type, arg. position, max entropy line 26.60%

4.3 Evaluation
Our primary evaluation metric is the percentage of variable names

correctly recovered in our test set, shown in Table 1, which reached

up to 24% (±1.2% with 95% confidence). Counting approximate

matches (manually verified), we are able to recover up to 27.2% of

the original variables (±1.2% with 95% confidence).

58% of the decompiled variables had no “correct” variable name

assigned to them by the alignment process. Some are spurious vari-

ables generated by the decompiler. These unaligned variables are

ignored since it’s unknown whether they were correctly renamed.

5 CONCLUSIONS
This seems to be a promising method for improving variable names

in decompiled code. While the variable names generated certainly

aren’t perfect, they improve substantially on the arbitrary numeric

identifiers generated by the decompiler. Intuitively, these variable

names seem to be helpful, but future work could use human studies

to quantify the effect of these improved identifier names on code

comprehension.

Future work could also focus on improving the quality of the

suggestions. For instance, replacing the statistical machine transla-

tion with a neural-based translation model would be a promising

avenue for future exploration. We hope to make the current tool

available online for experimentation and future research.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, 281–293.

[2] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G Feitelson.

2017. Meaningful identifier names: the case of single-letter variables. In Proceed-
ings of the 25th International Conference on Program Comprehension. IEEE Press,

45–54.

[3] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Programming with

"Big Code": Lessons, Techniques and Applications. In 1st Summit on Advances
in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in
Informatics (LIPIcs)), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Ben-

jamin S. Lerner, and Greg Morrisett (Eds.), Vol. 32. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 41–50. https://doi.org/10.4230/

LIPIcs.SNAPL.2015.41

[4] Brendan Cleary, Christoph Treude, Fernando Figueira Filho, Margaret-Anne

Storey, and Martin Salois. 2013. Improving Tool Support for Software Reverse

Engineering in a Security Context. In International Conference on Augmented
Cognition. Springer, 113–122.

[5] Premkumar Devanbu. 2015. New initiative: the naturalness of software. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
IEEE, 543–546.

[6] MV Emmerik and Trent Waddington. 2004. Using a decompiler for real-world

source recovery. In Reverse Engineering, 2004. Proceedings. 11th Working Confer-
ence on. IEEE, 27–36.

[7] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.

2487132

[8] Ilfak Guilfanov. 2008. Decompilers and beyond. Black Hat USA (2008).

[9] Hex-Rays. 2017. Hex-Rays 2.4. (2017). https://www.hex-rays.com

[10] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 837–847.

[11] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based

statistical translation of programming languages. In Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software. ACM, 173–184.

[12] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.
[13] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello

Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard

Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007.

Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions (ACL ’07). Association for Computational Linguistics, Stroudsburg, PA,

USA, 177–180. http://dl.acm.org/citation.cfm?id=1557769.1557821

[14] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s

in a Name? A Study of Identifiers. In Proceedings of the 14th IEEE International
Conference on Program Comprehension (ICPC ’06). IEEE Computer Society, Wash-

ington, DC, USA, 3–12. https://doi.org/10.1109/ICPC.2006.51

[15] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program

Properties from "Big Code". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM,

New York, NY, USA, 111–124. https://doi.org/10.1145/2676726.2677009

[16] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with

statistical language models. In ACM SIGPLAN Notices, Vol. 49. ACM, 419–428.

[17] Edward J. Schwartz, JongHyup Lee, Maverick Woo, and David Brumley. 2013.

Native x86 Decompilation Using Semantics-preserving Structural Analysis and

Iterative Control-flow Structuring. In Proceedings of the 22Nd USENIX Conference
on Security (SEC’13). USENIX Association, Berkeley, CA, USA, 353–368. http:

//dl.acm.org/citation.cfm?id=2534766.2534797

[18] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recover-

ing Clear, Natural Identifiers from Obfuscated JavaScript Names. In 12th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM.

[19] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.

2016. Helping Johnny to Analyze Malware: A Usability-Optimized Decompiler

and Malware Analysis User Study. In Security and Privacy (SP), 2016 IEEE Sympo-
sium on. IEEE, 158–177.

[20] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew

Smith. 2015. No More Gotos: Decompilation Using Pattern-Independent Control-

Flow Structuring and Semantic-Preserving Transformations.. In NDSS.

https://doi.org/10.4230/LIPIcs.SNAPL.2015.41
https://doi.org/10.4230/LIPIcs.SNAPL.2015.41
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://www.hex-rays.com
http://dl.acm.org/citation.cfm?id=1557769.1557821
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1145/2676726.2677009
http://dl.acm.org/citation.cfm?id=2534766.2534797
http://dl.acm.org/citation.cfm?id=2534766.2534797

	Abstract
	1 Research Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	4 Results and Contributions
	4.1 Extracting Aligned Training Data
	4.2 Machine Translation Framework
	4.3 Evaluation

	5 Conclusions
	References

